Rhodamine-123 staining in hematopoietic stem cells of young mice indicates mitochondrial activation rather than dye efflux.
نویسندگان
چکیده
Low-intensity fluorescence of rhodamine-123 (Rh-123) discriminates a quiescent hematopoietic stem cell (HSC) population in mouse bone marrow, which provides stable, long-term hematopoiesis after transplantation. Rh-123 labels mitochondria with increasing intensity proportional to cellular activation, however the intensity of staining also correlates with the multidrug resistance (MDR) phenotype, as Rh-123 is a substrate for P-glycoprotein (P-gp). To address the mechanisms of long-term repopulating HSC discrimination by Rh-123, mouse bone marrow stem and progenitor cells were isolated based on surface antigen expression and subsequently separated into subsets using various fluorescent probes sensitive to mitochondrial characteristics and/or MDR function. We determined the cell cycle status of the separated populations and tested for HSC function using transplantation assays. Based on blocking studies using MDR modulators, we observed little efflux of Rh-123 from HSC obtained from young (3- to 4-week-old) mice, but significant efflux from HSC derived from older animals. A fluorescent MDR substrate (Bodipy-verapamil, BodVer) and Rh-123 both segregated quiescent cells into a dim-staining population, however Rh-123-based separations resulted in better enrichment of HSC function. Similar experiments using two other fluorescent probes with specificity for either mitochondrial mass or membrane potential indicated that mitochondrial activation is more important than either mitochondrial mass or MDR function in defining HSC in young mice. This conclusion was supported by morphologic studies of cell subsets separated by Rh-123 staining.
منابع مشابه
ABC transporter activities of murine hematopoietic stem cells vary according to their developmental and activation status.
Primitive hematopoietic cells from several species are known to efflux both Hoechst 33342 and Rhodamine-123. We now show that murine hematopoietic stem cells (HSCs) defined by long-term multilineage repopulation assays efflux both dyes variably according to their developmental or activation status. In day 14.5 murine fetal liver, very few HSCs efflux Hoechst 33342 efficiently, and they are thus...
متن کاملLow rhodamine 123 retention identifies long-term human hematopoietic stem cells within the Lin-CD34+CD38- population.
Progress to uncover the molecular and cellular regulators that govern human hematopoietic stem cell (HSC) fate has been impeded by an inability to obtain highly purified fractions of HSCs. We report that the rhodamine 123 (Rho 123) dye effluxing fraction of the Lin-CD34+CD38- population contains SCID-repopulating cells (SRCs) capable of long-term repopulation in primary nonobese diabetic/severe...
متن کاملRhodamine 123 efflux in human subpopulations of hematopoietic stem cells: comparison between bone marrow, umbilical cord blood and mobilized peripheral blood CD34+ cells.
Hematopoietic stem cells (HSC) can be identified by the expression of the CD34 molecule. CD34+ cells are found in bone marrow (BM), umbilical cord blood (UCB) and in mobilized peripheral blood (PB). CD34+ cells express P-glycoprotein (Pgp), a product of the multidrug resistance (MDR) gene. Pgp activity can be measured by the efflux of the dye Rhodamine 123 (Rho 123) and can be blocked by verapa...
متن کاملPrimitive human hematopoietic cells displaying differential efflux of the rhodamine 123 dye have distinct biological activities.
Human bone marrow (BM) CD34+ cells were stained with the vital dye, rhodamine 123 (Rh123), and analyzed for their biological properties based on the level of dye retention. Heterogeneous rhodamine staining is seen within the CD34+ population, and the staining patterns differ dramatically between fetal BM (FBM), adult BM (ABM) and mobilized peripheral blood (MPB). Kinetic analysis of the efflux ...
متن کاملFunctional heterogeneity is associated with the cell cycle status of murine hematopoietic stem cells
Hematopoietic stem cells (HSCs) are characterized by their ability to differentiate into all hematopoietic cell lineages while retaining their capacity for self renewal. One of the predictions of this model is the existence of a heterogeneous pool of HSCs, some members of which are destined to become lineage restricted progenitor cells while others function to renew the stem cell pool. To test ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 91 11 شماره
صفحات -
تاریخ انتشار 1998